Roll No						
NULLINU.						

Total No. of Questions: 09

Total No. of Pages: 02

B. Tech. (CE) (Sem. 6) NUMERICAL METHODS IN CIVIL ENGINEERING Subject Code: BTCE-604 Paper ID: A2291

Time: 03 Hrs.

Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. Section A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. Section B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- **3.** Section C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION A

1.

- a) Write a short note on initial value problem.
- b) Find the Eigenvalues and Eigenvector of the matrix
- c) Write a short note on Galerkin's method of least square.

d) Classify the equation

$$(1+x^2)\frac{\partial^2 u}{\partial x^2} + (5+2x^2)\frac{\partial^2 u}{\partial x \partial t} + (4+x^2)\frac{\partial^2 u}{\partial t^2} = 0.$$

- e) Evaluate $\Delta^n(e^x)$, the interval of differencing being unity.
- Find a second degree polynomial from the following data
 x: 0 1 2
 y: 1 6 17
- g) Using iterative method find the inverse of matrix $\begin{bmatrix} 1 & 10 \\ 2 & 0 \end{bmatrix}$
- h) Find the general solution of the difference equation $\Delta^2 u_n - 3\Delta u_n + 2u_n = 0$
- i) Find the interval on which the root of the equation $x^3 2x 5 = 0$ lies.
- j) Write Newton Raphson formula for the solution of non-linear equation.

www.a2zpapers.com

www.a2zpapers.com

Download free old Question papers gndu, ptu hp board, punjab board

6.

SECTION B

- 2. Solve the system by Jordan method 2x + y + z = 10 3x + 2y + 3z = 18 x + 4y + 9z = 16
- 3. Solve the boundary value problem $\frac{d^2y}{dx^2} - y = 0 \text{ with } y(0) = 0 \text{ and } y(2) = 3.62686$
- 4. Find a real root of the equation $3x = \cos x + 1$.
- 5. Explain the New marks method for solving the non linear problems.

Fit	a secor	nd degr	ee poly	nomial	to the fo	llowing	data
x:	1.0	1.5	2.0	2.5	3.0	3.5	4.0
y:	1.1	1.3	1.6	2.0	2.7	3.4	4.1

SECTION C

- 7. Using Runge Kutta method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with y(0)=1 at x=0.2, 0.4
- 8. Solve the equation $u_{xx} + u_{yy} = -81xy$, 0 < x < 1, 0 < y < 1, given that u(0,y)=0, u(x,0)=0, u(1,y) = 100, u(x,1) = 100 and $h = \frac{1}{3}$
- **9.** From the following table, estimate the number of students who obtained marks between 40 and 45:

Marks:	30-40	40-50	50-60	60-70	70-80
No. of Students	31	42	51	35	31